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RELATIVE SHEAR DEFORMATION OF NON-NEWTONIAN LIQUIDS
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Flow induced by rotating bodies is studied from the viewpoint of the shear of liquid particles
solution of the boundary layer equations for Newtonian and power-law non-Newtonian liquids
rotating disc, a typical velocity field was obtained. The shear distribution of particles leaving the
edge shows that the most important deformation occurs in the boundary layer. Distribution of
from the viewpoint of the volume flow rate is also presented. Application of the results to the
diction of particle-breakup dynamics at rotating impellers is discussed.

Key words: Boundary layer; Rotating disc; Shear; Particle breakup; Non-Newtonian liquids.

Rotating boundary layers at mixing agitators or centrifugal pump rotors are s
where high-level shear stress takes place. This is important from the viewpo
micromixing, if striae of different composition enter the boundary layer. Deform:
particles (gas bubbles, drops of immiscible liquid, elastic particles, biological bc
and various agglomerates) may change reversibly or irreversibly their shape or (
broken to smaller elements. The deformation can also intensify mass transfer. Bc
level of shear stress and duration of its action on a given patrticle is importar
prediction of the process result.

Theories of micromixing and interaction of liquid with small particles were mo
developed from a phenomenological concept of turbufehdrocesses in high-shea
rate laminar boundary layers have not been studied extensively. In our experir
study?, we discovered that the shear rate at turbine impeller blades had similar p
ties as that one in laminar boundary layer at a rotating disc. The same conclusic
obtained by measuring shear rates at the centrifugal pump infpeitércrossing the
turbulence threshold at Reynolds numisea = 2 . 1¢. Application of the laminar
boundary layer approach was found fruitful even as a model for the prediction of t
nal drop size in agitated vessel&nowledge of the total relative shear deformati
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imposed on a particle in a given streamline is an additional information which
serve for understanding the dynamics of the drop breakup.

In the present paper, the shear distribution in a liquid pumped by a rotating d
calculated from the velocity field, obtained by solving the pertinent boundary |
equations.

THEORETICAL

At higher Reynolds numbers, the flow around a finite rotating disc (Fig. 1) with ra
R can be, in the zone< R, approximated by the solution of flow around an infin
rotating disc. Simple boundary conditions for the latter case enable transformati
complete Navier—Stokes equations for Newtonian liquids, and the boundary laye
ations (high-Reynolds-number approximation) for non-Newtonian liquids into a s
ordinary differential equations. Their solution can be generally described<fét by
the formulas:

Ve =ar F(() @
Vg = r G(O) 2
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Vv, = @r E‘;mg H(Q) ©)
o K 0O

where the dimensionless coordinate is defined as

Fe. 1
Coordinate system for the rotating disc flow
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Special functiond=(¢), G(¢), H(¢) can be obtained by solution of the set of ordine
differential equations formulated for Newtonian liquids X 1) by KarmaA These
functions, first computed approximately by CocHraare presented as tables in tl
Schlichting monogragh Today they can be determined numerically with any accur
requested. The problem for non-Newtonian liquids was analyzed using a som
different terminology by Mitschka'l, who computed the velocity profiles for powe
law liquids with flow indexes 0.¥ n< 1.5.

Any liquid element in the space < R approaches the disc, where its rotation
accelerated, and it is moved radially by the action of centrifugal forces. We assum
after leaving the disc region, local velocity differences vanish, and additional defc
tion outside the disc region can be neglected. Therefore, the shear deformation
ranger < Ris in the focus of our interest.

The local shear rate, can be calculated using two major components of the k
matics tensorgv,/dz, ov,/dz. After introduction of the Reynolds number,

(=

_ Rw?™
Re= K , 5)

it can be expressed by the dimensionless function
r D2 12
L= Rl REDVEQREFCED ®)
O

By symbolsF' andG', derivatives of function§ and G of the argument are shortly
denoted.

Total relative shear deformatioD, of a fluid particle is given by the product of loc:
shear rate and time element integrated along the streamline coming from infinit
leaving the disc edge= R at the distance,,

D:—Iygdz. @

As the axial velocity is/, = dz/dt, we can apply relations3), (4) and 6) in the inte-
grand ), which gives

2/(1+n)
r O (F12 + G12)1/2
D@en) =R g = dl, @®)
zﬁim H
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where

ZO = %ER g/+n) (9)

As a streamline projected on the plane const is

dad__F
- ry (20
we obtain by integration
r ¢ F
Inp = J H - (11)
0

When a new special functidd({y,n) is introduced using known functioi®s G, H as
S -
_ 02 D(Flz G12)1/2
B((oN) —Zl'eXpﬁ_[ H dZDidZ 12
0

it is evident thatB has the meaning of a normalized relative shear deformation
relation @) can be written simply as

D = Re”1*B(Z,,n). 13
For the particular case of Newtonian liquigs=1) where
F=—H, @4

we obtain simply

+ G2

B = (HE (F( e 19

The normalized relative shear deformati(d,,n) for selected values af is plotted in
Fig. 2. There are apparently two different regions, which is usual for the prok
where the boundary layer approach can be applied. The most significant deforr
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occurs forly< 3, which is apparent from Fig. 3, where the prod{y8({,,n) is
presented. For non-Newtonian liquids, the transition from the boundary layef {Jo
to the bulk (hight) is considerably smoother than for- 1.

The volume of liquid passing the disc in a given distance above it is given by
tion F({y,n). Therefore the plot of vs Bin Fig. 4 is just the distribution of the nor
malized shear in the liquid leaving the disc. The main part of the pumped volume
valueB close to unity both for Newtonian and non-Newtonian liquids.

Cumulative volume rate of the flow which leaves the disc through the layer (
< z,0n one side of the disc ©§(z,), and can be calculated as

%
Q=21 rv, dz= 2moRPRe VMM M(Zon) (16)
0

The continuity equation gives

.1, @A-nm_¢
F= 2H 2(1+n)F 2" @7

and then the normalized flow ratéd({,,n) defined by the relation

100 [ |
B
10 |+ .
1L N\ J
\
>
0.1 N\ .
n=0.1
N
o)
0.01 1 o8]
n=1
Fic. 2
0.001 ! ! Normalized relative shear deformati@nfor
0.01 01 1 &) 10  the rotating disc flow

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



Relative Shear Deformation of Non-Newtonian Liquids 2097

%
M(Zon) = [ F(Z,n) d¢ (18
0

can also be expressed directly using functidrendF:

n+1 1-n
H(Con) + N+ 1

M(Con) =~ (o Fon) - 19

3n+1

0.1 1 10 100 o 1000

Fic. 3
Product, B({y,n) as a function of,, for selected values af for the rotating disc flow
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Fc. 4
Normalized relative shear deformation distribution in liquid passing the disc
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As it is seen from Fig. 5, the cumulative volume flow rate through a narrow |
adjacent to a disc increases approximately with the square of distance. In this re
is more suitable to read the values of the normalized volume flow rate from the p
a functionM(Z,,n)/Z3, presented in Fig. 6.

The dependence d¥l on B shown in Fig. 7 indicates what volume flow rat
Q = 2R3 Re VM, of pumped liquid is subjected to total relative shear defor
tions higher than D Re/1*B. There exists an asymptote, {im,(MB?) = f(n), and
therefore a better reading for the more important higher deformation range is prc
by the plot in Fig. 8.

DISCUSSION

Deformation of fluid continuum particles itself can be used to determine the stri
thickness distribution and its time changes in an equipment with a rotating disc
similar impeller. When an elementary volume with laméfigstriation) thicknesd
traverses the boundary layer, the striation thickness assumes a new value whict
proximatelyL/(1 + D) for smallD, or L/D for largerD.

Another important quantity, which can be estimated with a knowledge of rel:
shear deformation, is the size of deformable particles (bubbles, immiscible ¢
breakable plastic particles, or assemblages of smaller objects) dispersed in the
Evolution of their size as an effect of the passage along a rotor generally follow
striation thickness. However, there are several additional factors:

First, there is usually a certain limit of breakup, given by a terminal particledgize
For drops and bubbles,g, it is controlled by interface forces. For agglomerates, cc
sion forces of various nature operate.
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Cumulative volume flow ratéM as a function Cumulative flow rateM for lower range of,
of {, for selected values af for the rotating
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Second, while bubbles and low-viscosity particles are deformed similarly to the
bient liquid, relative shear deformation of viscous drdps, can be estimated by th
relationDp = (Uc/Mp) D, wherepd/Hp is the viscosity ratio of the continuous and di
persed phases. There is a quantitative difference between low-viscosity and hic
cosity drops. To be broken, the low-viscosity drop needs to cross the comalitisri,
which means thaB >> 0.1 is satisfactory even R, = 100. Practically all the liquid
pumped by the rotating disc is subjected to an essentially higher relative shear de
tion and, as shown earlferin common mixing equipment, the mixing time necess:

100 T T T T T T
M n=0.1
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Normalized volume flow rateM, of liquid subjected to relative shear deformations higher tt
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0.8 T
n=01
M B
0.6 - b
n=02
0.4 b
n=04
0.2 n=0.6 _
=0.8
n=1
0.0 L .
0.1 1 10 B 100
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Normalized cumulative volume flow rathl, of liquid subjected to relative shear deformations higt
than Ré"*B for the high-deformation region
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for passing all the liquid volume along the impelletyjs= 30 Rg/%/N. In small pilot-
plant units,t,, usually makes several minutes; on industrial scale, however, it ms
several hours. For high-viscosity drops, high value88of 1 are required, and the
volume flow rate decreases according to the reldfion0.1582 (as apparent from Fig. 8)
The related time to pass the breakup region can be estimated,, &as
65(p/Hc)?(NR&?), which indicates a considerable slow-down of the process at t
viscosity drops. Estimation of the drop breakup rate based on the deformation k
edge is in accordance with common experience while the theories of turbulence
no explanation for the long-time response.

Third, elasticity and plasticity of the particles causes that, after a small relative
deformation of the ambient liquid, the particles relax again, and there is no respo
their size. There is some critical total relative shear deformation of the ambient |i
necessary for the breakup which is at ldast 2 for low-viscosity objects and consic
erably higher for other particles. For example, from the data by Coliveveé have
estimated the critical total deformati@n= 3 000 of a liquid substrate, which destro
the studied class of cells in a bioreactor, and the assumptibh=00.15B gives an
acceptable model for the process dynamics.

CONCLUSIONS

The velocity field at an infinite high-speed rotating disc was calculated by solvin
boundary layer equations. The equations can be transformed to ordinary diffel
equations and easily solved for Newtonian liquids and, neglecting some, pro
minor terms, this can be also done for the non-Newtonian case. It is known the
solution describes well the velocity field near a rotating impeller. By integration of
local shear stress along streamlines coming from the bulk towards the impeller an
to the impeller tip, the total relative shear deformation was computed. It can be
that there are no essential differences in the dimensionless deformation distributi
non-Newtonian and Newtonian liquids. If some difference were pointed out, it w
be the fast decay of velocity behind the Newtonian boundary layer while a measi
induced flow is apparent beyond the non-Newtonian boundary layer.

Total relative shear deformatiob, for streamlines entering the boundary layer
proportional toRe”* and decreases first inversely proportionally to the distance f
the impeller surface. Later on and outside the boundary layer, the total deforn
decreases faster.

Distribution of D with respect to the cumulative volume flow rate shows that pre\
ing volume pumped by the impeller is subjected to the total shear deformation
orderD = R&/(*")p,

A possibility of applying the knowledge of total relative shear deformation to pre
micromixing and the particle-breakup dynamics at impellers was shown.
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APPENDIX

While radius,R, and angular velocityy, is used to characterize the length and spee
fluid mechanics papers, in chemical engineering correlations, the diashet@R, and
revolutions per secondy = w/2m, are preferred instead. Velocity components are tt

v, =TNdR{Q) , (1a)

etc. Other formulas could be transformed by using

Rg, =N?"d’p/K = °7/2" Re (5a)

7 = (2re-n V) z /R (4a)

D = (re7/2) Y Re+ B(C) (139
QUNGF) = (rE"/2) 4+ RH) M(Z) (162)

For Newtonian liquids, it is particularly:

v, =3.1MNdF(Q) , (1b)

Rq, =N p/ji = 1.5Re (5b)

7 =2.5%/dRe{2= 2.5 (Np/u)Y'2 . (4b)
D = 1.2RR¢/2B() (13h)

Q/(NGF) = 3.9Rg2M(Y) . (16h)
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SYMBOLS

DV " O5SZZXINOTMOa®

e

gN'O'C'<N<§'

normalized total relative shear deformation
impeller diameter, m

total relative shear deformation
dimensionless radial velocity
dimensionless angular velocity
dimensionless axial velocity
consistency coefficient, Pa s
dimensionless cumulative volume flow
rotation speed,™$

power-law flow index

cumulative volume flow rate, fi51
radial coordinate, m

impeller radius, m

Reynolds number

mixing time, s

velocity, m st

axial coordinate, m

shear rate,3

viscosity, Pa s

density, kg m®

dimensionless axial coordinate
angular speed; 5
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