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Flow induced by rotating bodies is studied from the viewpoint of the shear of liquid particles. By
solution of the boundary layer equations for Newtonian and power-law non-Newtonian liquids at a
rotating disc, a typical velocity field was obtained. The shear distribution of particles leaving the disc
edge shows that the most important deformation occurs in the boundary layer. Distribution of shear
from the viewpoint of the volume flow rate is also presented. Application of the results to the pre-
diction of particle-breakup dynamics at rotating impellers is discussed.
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Rotating boundary layers at mixing agitators or centrifugal pump rotors are spaces
where high-level shear stress takes place. This is important from the viewpoint of
micromixing, if striae of different composition enter the boundary layer. Deformable
particles (gas bubbles, drops of immiscible liquid, elastic particles, biological bodies
and various agglomerates) may change reversibly or irreversibly their shape or can be
broken to smaller elements. The deformation can also intensify mass transfer. Both the
level of shear stress and duration of its action on a given particle is important for
prediction of the process result.

Theories of micromixing and interaction of liquid with small particles were mostly
developed from a phenomenological concept of turbulence1,2. Processes in high-shear-
rate laminar boundary layers have not been studied extensively. In our experimental
study3, we discovered that the shear rate at turbine impeller blades had similar proper-
ties as that one in laminar boundary layer at a rotating disc. The same conclusion was
obtained by measuring shear rates at the centrifugal pump impeller4 until crossing the
turbulence threshold at Reynolds number Re ≈ 2 . 105. Application of the laminar
boundary layer approach was found fruitful even as a model for the prediction of termi-
nal drop size in agitated vessels5. Knowledge of the total relative shear deformation
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imposed on a particle in a given streamline is an additional information which can
serve for understanding the dynamics of the drop breakup.

In the present paper, the shear distribution in a liquid pumped by a rotating disc is
calculated from the velocity field, obtained by solving the pertinent boundary layer
equations.

THEORETICAL

At higher Reynolds numbers, the flow around a finite rotating disc (Fig. 1) with radius
R can be, in the zone r < R, approximated by the solution of flow around an infinite
rotating disc. Simple boundary conditions for the latter case enable transformation of
complete Navier–Stokes equations for Newtonian liquids, and the boundary layer equ-
ations (high-Reynolds-number approximation) for non-Newtonian liquids into a set of
ordinary differential equations. Their solution can be generally described for r < R by
the formulas:

vr = ωr F(ζ)  , (1)

vϕ = ωr G(ζ)  , (2)

vz = ωr 



r2ω2−nρ

K




−1/(1+n)

H(ζ)  , (3)

where the dimensionless coordinate is defined as

FIG. 1
Coordinate system for the rotating disc flow
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ζ ≡ 



z
r



 



r2ω2−nρ

K




1/(1+n)

  . (4)

Special functions F(ζ), G(ζ), H(ζ) can be obtained by solution of the set of ordinary
differential equations formulated for Newtonian liquids (n = 1) by Karman6. These
functions, first computed approximately by Cochran7, are presented as tables in the
Schlichting monograph8. Today they can be determined numerically with any accuracy
requested. The problem for non-Newtonian liquids was analyzed using a somewhat
different terminology by Mitschka9–11, who computed the velocity profiles for power-
law liquids with flow indexes 0.1 ≤ n ≤ 1.5.

Any liquid element in the space r < R approaches the disc, where its rotation is
accelerated, and it is moved radially by the action of centrifugal forces. We assume that
after leaving the disc region, local velocity differences vanish, and additional deforma-
tion outside the disc region can be neglected. Therefore, the shear deformation in the
range r < R is in the focus of our interest.

The local shear rate, γ, can be calculated using two major components of the kine-
matics tensor, ∂vr/∂z, ∂vϕ/∂z. After introduction of the Reynolds number,

Re = 
R2ω2−nρ

K
  , (5)

it can be expressed by the dimensionless function

γ
ω = 




r
R





2/(1+n)

Re1/(1+n) (F′(ζ)2 + G′(ζ)2)
1/2

  . (6)

By symbols F′ and G′, derivatives of functions F and G of the argument ζ are shortly
denoted.

Total relative shear deformation, D, of a fluid particle is given by the product of local
shear rate and time element integrated along the streamline coming from infinity and
leaving the disc edge r = R at the distance z0,

D = −∫ 
z0

∞

γdt
dz

 dz  . (7)

As the axial velocity is vz ≡ dz/dt, we can apply relations (3), (4) and (6) in the inte-
grand (7), which gives

D(ζ0,n) = Re1/(1+n)∫ 
ζ0

∞



r
R





2/(1+n)

 
(F′2 + G′2)1/2

−H
 dζ  , (8)
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where

ζ0 ≡ 




z0

R




 Re1/(1+n)  . (9)

As a streamline projected on the plane ϕ = const is

dr
dζ = r 

F
H

  , (10)

we obtain by integration

ln
r
R

 = ∫ 
ζ0

ζ
F
H

 dζ  . (11)

When a new special function B(ζ0,n) is introduced using known functions F, G, H as

B(ζ0,n) = ∫ 
ζ0

∞

exp 




2
1+n

 ∫ 
ζ0

ζ
F
H

 dζ


 
(F′2 + G′2)1/2

−H
dζ  , (12)

it is evident that B has the meaning of a normalized relative shear deformation and
relation (9) can be written simply as

D = Re1/(1+n)B(ζ0,n). (13)

For the particular case of Newtonian liquids (n = 1) where

F = 
−1
2

H′  , (14)

we obtain simply

B(ζ0,1) ≡ (−H(ζ0))1/2 ∫ 
ζ0

∞
(F′2 + G′2)1/2

(−H)3/2  dζ  . (15)

The normalized relative shear deformation B(ζ0,n) for selected values of n is plotted in
Fig. 2. There are apparently two different regions, which is usual for the problems
where the boundary layer approach can be applied. The most significant deformation
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occurs for ζ0 < 3, which is apparent from Fig. 3, where the product ζ0B(ζ0,n) is
presented. For non-Newtonian liquids, the transition from the boundary layer (low ζ0)
to the bulk (high ζ0) is considerably smoother than for n = 1.

The volume of liquid passing the disc in a given distance above it is given by func-
tion F(ζ0,n). Therefore the plot of F vs B in Fig. 4 is just the distribution of the nor-
malized shear in the liquid leaving the disc. The main part of the pumped volume has a
value B close to unity both for Newtonian and non-Newtonian liquids.

Cumulative volume rate of the flow which leaves the disc through the layer 0 < z
< z0 on one side of the disc is Q(z0), and can be calculated as

Q = 2π∫ 
0

z0

rvr dz = 2πωR3Re−1/(1+n) M(ζ0,n)  . (16)

The continuity equation gives

F = − 
1
2
H′ − 

(1 − n)
2(1 + n)F′ ζ

2
  , (17)

and then the normalized flow rate, M(ζ0,n) defined by the relation
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FIG. 2
Normalized relative shear deformation B for
the rotating disc flow

2096 Wichterle, Mitschka:

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



M(ζ0,n) = ∫ 
0

ζ0

F(ζ,n) dζ (18)

can also be expressed directly using functions H and F:

M(ζ0,n) = − 
n + 1
3n + 1

H(ζ0,n) + 
1 − n
3n + 1

 ζ0 F(ζ0,n)  . (19)
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FIG. 4
Normalized relative shear deformation distribution in liquid passing the disc
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FIG. 3
Product ζ0 B(ζ0,n) as a function of ζ0 for selected values of n for the rotating disc flow
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As it is seen from Fig. 5, the cumulative volume flow rate through a narrow layer
adjacent to a disc increases approximately with the square of distance. In this range it
is more suitable to read the values of the normalized volume flow rate from the plot of
a function M(ζ0,n)/ζ0

2, presented in Fig. 6.
The dependence of M on B shown in Fig. 7 indicates what volume flow rate,

Q = 2πωR3 Re–1/(1+n)M, of pumped liquid is subjected to total relative shear deforma-
tions higher than D = Re1/(1+n)B. There exists an asymptote, limM→∞(MB2) = f(n), and
therefore a better reading for the more important higher deformation range is provided
by the plot in Fig. 8.

DISCUSSION

Deformation of fluid continuum particles itself can be used to determine the striation
thickness distribution and its time changes in an equipment with a rotating disc or a
similar impeller. When an elementary volume with lamellar12 (striation) thickness L
traverses the boundary layer, the striation thickness assumes a new value which is ap-
proximately L/(1 + D) for small D, or L/D for larger D. 

Another important quantity, which can be estimated with a knowledge of relative
shear deformation, is the size of deformable particles (bubbles, immiscible drops,
breakable plastic particles, or assemblages of smaller objects) dispersed in the liquid.
Evolution of their size as an effect of the passage along a rotor generally follows the
striation thickness. However, there are several additional factors:

First, there is usually a certain limit of breakup, given by a terminal particle size, dP.
For drops and bubbles, e.g., it is controlled by interface forces. For agglomerates, cohe-
sion forces of various nature operate.
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FIG. 6
Cumulative flow rate M for lower range of ζ0
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FIG. 5
Cumulative volume flow rate M as a function
of ζ0 for selected values of n for the rotating
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Second, while bubbles and low-viscosity particles are deformed similarly to the am-
bient liquid, relative shear deformation of viscous drops, DD, can be estimated by the
relation DD = (µC/µD) D, where µC/µD is the viscosity ratio of the continuous and dis-
persed phases. There is a quantitative difference between low-viscosity and high-vis-
cosity drops. To be broken, the low-viscosity drop needs to cross the condition D >> 1,
which means that B >> 0.1 is satisfactory even at ReM = 100. Practically all the liquid
pumped by the rotating disc is subjected to an essentially higher relative shear deforma-
tion and, as shown earlier5, in common mixing equipment, the mixing time necessary
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FIG. 8
Normalized cumulative volume flow rate, M, of liquid subjected to relative shear deformations higher
than Re1/(1+n)B for the high-deformation region
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FIG. 7
Normalized volume flow rate, M, of liquid subjected to relative shear deformations higher than
Re1/(1+n)B
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for passing all the liquid volume along the impeller is tM ≈ 30 ReM
1/2/N. In small pilot-

plant units, tM usually makes several minutes; on industrial scale, however, it may be
several hours. For high-viscosity drops, high values of B > 1 are required, and the
volume flow rate decreases according to the relation M ≈ 0.15/B2 (as apparent from Fig. 8).
The related time to pass the breakup region can be estimated as tM ≈
65(µD/µC)2/(NReM

1/2), which indicates a considerable slow-down of the process at high-
viscosity drops. Estimation of the drop breakup rate based on the deformation knowl-
edge is in accordance with common experience while the theories of turbulence have
no explanation for the long-time response.

Third, elasticity and plasticity of the particles causes that, after a small relative shear
deformation of the ambient liquid, the particles relax again, and there is no response to
their size. There is some critical total relative shear deformation of the ambient liquid,
necessary for the breakup which is at least D = 2 for low-viscosity objects and consid-
erably higher for other particles. For example, from the data by Converti13, we have
estimated the critical total deformation D = 3 000 of a liquid substrate, which destroys
the studied class of cells in a bioreactor, and the assumption of M ≈ 0.15/B2 gives an
acceptable model for the process dynamics.

CONCLUSIONS

The velocity field at an infinite high-speed rotating disc was calculated by solving the
boundary layer equations. The equations can be transformed to ordinary differential
equations and easily solved for Newtonian liquids and, neglecting some, probably
minor terms, this can be also done for the non-Newtonian case. It is known that this
solution describes well the velocity field near a rotating impeller. By integration of the
local shear stress along streamlines coming from the bulk towards the impeller and then
to the impeller tip, the total relative shear deformation was computed. It can be seen
that there are no essential differences in the dimensionless deformation distribution for
non-Newtonian and Newtonian liquids. If some difference were pointed out, it would
be the fast decay of velocity behind the Newtonian boundary layer while a measurable
induced flow is apparent beyond the non-Newtonian boundary layer.

Total relative shear deformation, D, for streamlines entering the boundary layer is
proportional to Re1/(1+n) and decreases first inversely proportionally to the distance from
the impeller surface. Later on and outside the boundary layer, the total deformation
decreases faster.

Distribution of D with respect to the cumulative volume flow rate shows that prevail-
ing volume pumped by the impeller is subjected to the total shear deformation of the
order D = Re1/(1+n)B.

A possibility of applying the knowledge of total relative shear deformation to predict
micromixing and the particle-breakup dynamics at impellers was shown.
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APPENDIX

While radius, R, and angular velocity, ω, is used to characterize the length and speed in
fluid mechanics papers, in chemical engineering correlations, the diameter, d = 2R, and
revolutions per second, N = ω/2π, are preferred instead. Velocity components are then

vr = πNdF(ζ)  , (1a)

etc. Other formulas could be transformed by using

ReM ≡ N2−nd2ρ/K = π2−n/2n Re (5a)

ζ ≡ (2π2−n)1/(1+n)z/dReM
1/(1+n) (4a)

D = (π2−n/2n)1/(1+n) ReM
1/(1+n) B(ζ) (13a)

Q/(Nd3) = (π3n/2)1/(1+n) ReM
−1/(1+n) M(ζ)  . (16a)

For Newtonian liquids, it is particularly:

vr = 3.14Nd F(ζ)  , (1b)

ReM ≡ Nd2 ρ/µ = 1.57Re (5b)

ζ = 2.51z/d ReM
1/2 = 2.51z (Nρ/µ)1/2  . (4b)

D = 1.25ReM
1/2 B(ζ) (13b)

Q/(Nd3) = 3.94ReM
−1/2 M(ζ)  . (16b)
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SYMBOLS

B normalized total relative shear deformation
d impeller diameter, m
D total relative shear deformation
F dimensionless radial velocity
G dimensionless angular velocity
H dimensionless axial velocity
K consistency coefficient, Pa sn

M dimensionless cumulative volume flow
N rotation speed, s–1

n power-law flow index
Q cumulative volume flow rate, m3 s–1

r radial coordinate, m
R impeller radius, m
Re Reynolds number
tM mixing time, s
v velocity, m s–1

z axial coordinate, m
γ shear rate, s–1

µ viscosity, Pa s
ρ density, kg m–3

ζ dimensionless axial coordinate
ω angular speed, s–1
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